

Weigh module

7,5 t... 300 t

Description

tecsis load cell supports are designed to prevent unwanted forces from affecting load cell performance.

The type AZK01X713 is a self aligning weigh module, with excellent load introduction.

The module is especially designed for using tecsis rocker column load cells in hopper and tank weighing applications. The module incorporates an integrated bumper stop eliminating the need of using check links thereby offering highest possible precision.

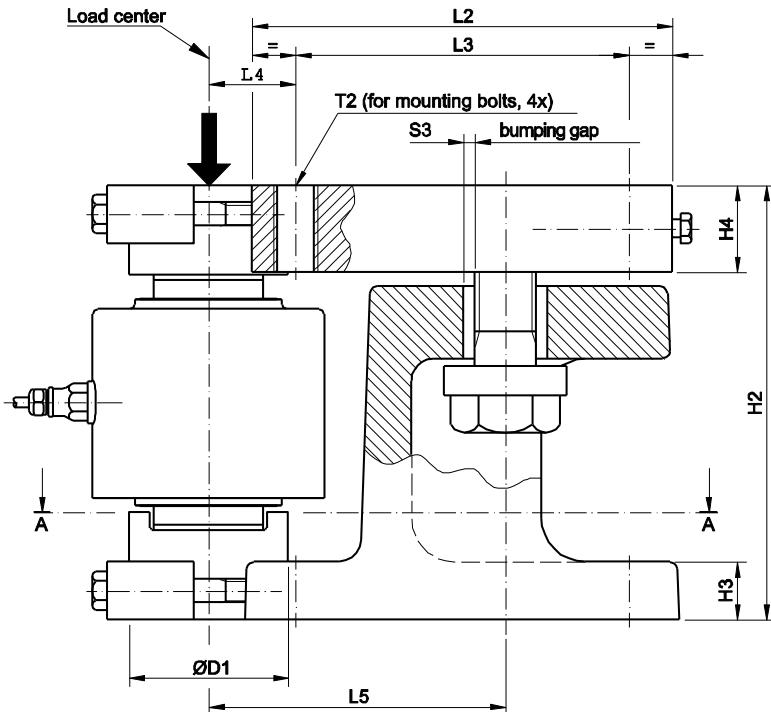
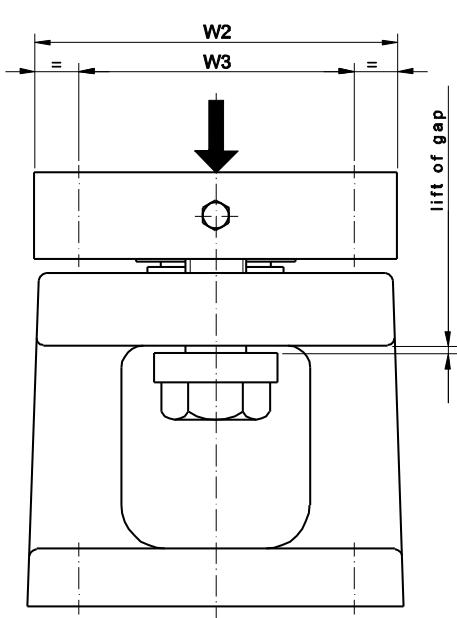
The weigh module is shipped completely pre-assembled; ready for installation by welding or bolting.

Features

- Simple installation
- Specially for silo weighing
- Integrated limit stop
- Integrated securing against lift-off
- Replacement of load cells only requires minor lifting
- Tumbler bearings allow temperature-dependent elongation
- Tumbler bearings facilitate high accuracy
- Delivery with load cell

Measuring ranges

- For nominal loads from 7.5t to 300 t

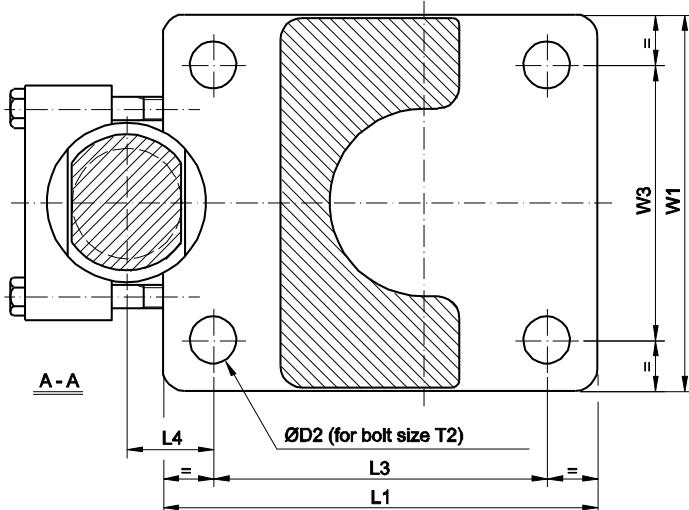
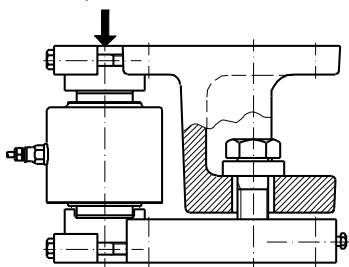


Applications

- For force transducers of the models F1270

Material

- Standard: Steel, electro galvanised

Model: AZK01X713



General

The module can preferably be welded to tank foot and foundation plate. This eliminates problems of getting holes on top and bottom lined up. Or for example bolted on top and welded on bottom.

Attention:

- Mounting bolts are not included in delivery.
- Silo foot and foundation plate to be horizontal within 0.4/100.

The weigh module can also be installed up side down as shown below in order to get through holes ØD2 on top.

Load cell	Dimensions (mm)															Max. permissible force on the anti-lift-off device*	Max. permissible force on limit stop**	Weight excluding load cell
	D1	D2	H2	H3	H4	L1	L2	L3	L4	L5	W1	W2	W3	S3	T2			
7.5/15/22.5 t	50	17.5	130	20	30	166	160	130	25	100	136	130	100	5	M16	100 kN	50 kN	15 kg
30/40 t	60	22	200	28	40	220	210	170	30	125	160	150	110	6	M20	180 kN	90 kN	33 kg
50/100 t	85	26	250	34	50	260	250	200	45	165	210	200	150	7	M24	300 kN	150 kN	65 kg
150 t	110	33	300	40	60	300	290	230	60	205	260	250	190	8	M30	400 kN	200 kN	113 kg
300 t	135	39	400	60	70	370	350	280	65	235	320	300	230	10	M36	600 kN	300 kN	225 kg

*In the most unfavourable case, the actual lifting force is taken up by the module

**In the case of tank/silo applications with 3 or 4 weighing modules, it can be assumed that the actual lateral forces (wind) get uniformly distributed across at least 2 modules

Subject of technical changes